(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
f(s(x)) → f(-(max(*(s(x), s(x)), +(s(x), s(s(s(0))))), max(s(*(s(x), s(x))), +(s(x), s(s(s(s(0))))))))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
min(s(x), s(y)) →+ s(min(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
+'(0', y) → y
+'(s(x), y) → s(+'(x, y))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
*'(x, 0') → 0'
*'(x, s(y)) → +'(x, *'(x, y))
f(s(x)) → f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0'))))))))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
min(0', y) → 0'
min(x, 0') → 0'
min(s(x), s(y)) → s(min(x, y))
max(0', y) → y
max(x, 0') → x
max(s(x), s(y)) → s(max(x, y))
+'(0', y) → y
+'(s(x), y) → s(+'(x, y))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
*'(x, 0') → 0'
*'(x, s(y)) → +'(x, *'(x, y))
f(s(x)) → f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0'))))))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
min,
max,
+',
-,
*',
fThey will be analysed ascendingly in the following order:
max < f
+' < *'
+' < f
- < f
*' < f
(8) Obligation:
TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
max(
*'(
s(
x),
s(
x)),
+'(
s(
x),
s(
s(
s(
0'))))),
max(
s(
*'(
s(
x),
s(
x))),
+'(
s(
x),
s(
s(
s(
s(
0'))))))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
min, max, +', -, *', f
They will be analysed ascendingly in the following order:
max < f
+' < *'
+' < f
- < f
*' < f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
min(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
gen_0':s3_0(
n5_0), rt ∈ Ω(1 + n5
0)
Induction Base:
min(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
min(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
s(min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0))) →IH
s(gen_0':s3_0(c6_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
max(
*'(
s(
x),
s(
x)),
+'(
s(
x),
s(
s(
s(
0'))))),
max(
s(
*'(
s(
x),
s(
x))),
+'(
s(
x),
s(
s(
s(
s(
0'))))))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
max, +', -, *', f
They will be analysed ascendingly in the following order:
max < f
+' < *'
+' < f
- < f
*' < f
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
max(
gen_0':s3_0(
n327_0),
gen_0':s3_0(
n327_0)) →
gen_0':s3_0(
n327_0), rt ∈ Ω(1 + n327
0)
Induction Base:
max(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
max(gen_0':s3_0(+(n327_0, 1)), gen_0':s3_0(+(n327_0, 1))) →RΩ(1)
s(max(gen_0':s3_0(n327_0), gen_0':s3_0(n327_0))) →IH
s(gen_0':s3_0(c328_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
max(
*'(
s(
x),
s(
x)),
+'(
s(
x),
s(
s(
s(
0'))))),
max(
s(
*'(
s(
x),
s(
x))),
+'(
s(
x),
s(
s(
s(
s(
0'))))))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n327_0), gen_0':s3_0(n327_0)) → gen_0':s3_0(n327_0), rt ∈ Ω(1 + n3270)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
+', -, *', f
They will be analysed ascendingly in the following order:
+' < *'
+' < f
- < f
*' < f
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_0':s3_0(
n733_0),
gen_0':s3_0(
b)) →
gen_0':s3_0(
+(
n733_0,
b)), rt ∈ Ω(1 + n733
0)
Induction Base:
+'(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
gen_0':s3_0(b)
Induction Step:
+'(gen_0':s3_0(+(n733_0, 1)), gen_0':s3_0(b)) →RΩ(1)
s(+'(gen_0':s3_0(n733_0), gen_0':s3_0(b))) →IH
s(gen_0':s3_0(+(b, c734_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
max(
*'(
s(
x),
s(
x)),
+'(
s(
x),
s(
s(
s(
0'))))),
max(
s(
*'(
s(
x),
s(
x))),
+'(
s(
x),
s(
s(
s(
s(
0'))))))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n327_0), gen_0':s3_0(n327_0)) → gen_0':s3_0(n327_0), rt ∈ Ω(1 + n3270)
+'(gen_0':s3_0(n733_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n733_0, b)), rt ∈ Ω(1 + n7330)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
-, *', f
They will be analysed ascendingly in the following order:
- < f
*' < f
(18) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
-(
gen_0':s3_0(
n1330_0),
gen_0':s3_0(
n1330_0)) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n1330
0)
Induction Base:
-(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
-(gen_0':s3_0(+(n1330_0, 1)), gen_0':s3_0(+(n1330_0, 1))) →RΩ(1)
-(gen_0':s3_0(n1330_0), gen_0':s3_0(n1330_0)) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(19) Complex Obligation (BEST)
(20) Obligation:
TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
max(
*'(
s(
x),
s(
x)),
+'(
s(
x),
s(
s(
s(
0'))))),
max(
s(
*'(
s(
x),
s(
x))),
+'(
s(
x),
s(
s(
s(
s(
0'))))))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n327_0), gen_0':s3_0(n327_0)) → gen_0':s3_0(n327_0), rt ∈ Ω(1 + n3270)
+'(gen_0':s3_0(n733_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n733_0, b)), rt ∈ Ω(1 + n7330)
-(gen_0':s3_0(n1330_0), gen_0':s3_0(n1330_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n13300)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
*', f
They will be analysed ascendingly in the following order:
*' < f
(21) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
*'(
gen_0':s3_0(
a),
gen_0':s3_0(
n1634_0)) →
gen_0':s3_0(
*(
n1634_0,
a)), rt ∈ Ω(1 + a·n1634
0 + n1634
0)
Induction Base:
*'(gen_0':s3_0(a), gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
*'(gen_0':s3_0(a), gen_0':s3_0(+(n1634_0, 1))) →RΩ(1)
+'(gen_0':s3_0(a), *'(gen_0':s3_0(a), gen_0':s3_0(n1634_0))) →IH
+'(gen_0':s3_0(a), gen_0':s3_0(*(c1635_0, a))) →LΩ(1 + a)
gen_0':s3_0(+(a, *(n1634_0, a)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(22) Complex Obligation (BEST)
(23) Obligation:
TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
max(
*'(
s(
x),
s(
x)),
+'(
s(
x),
s(
s(
s(
0'))))),
max(
s(
*'(
s(
x),
s(
x))),
+'(
s(
x),
s(
s(
s(
s(
0'))))))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n327_0), gen_0':s3_0(n327_0)) → gen_0':s3_0(n327_0), rt ∈ Ω(1 + n3270)
+'(gen_0':s3_0(n733_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n733_0, b)), rt ∈ Ω(1 + n7330)
-(gen_0':s3_0(n1330_0), gen_0':s3_0(n1330_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n13300)
*'(gen_0':s3_0(a), gen_0':s3_0(n1634_0)) → gen_0':s3_0(*(n1634_0, a)), rt ∈ Ω(1 + a·n16340 + n16340)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
f
(24) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(25) Obligation:
TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
max(
*'(
s(
x),
s(
x)),
+'(
s(
x),
s(
s(
s(
0'))))),
max(
s(
*'(
s(
x),
s(
x))),
+'(
s(
x),
s(
s(
s(
s(
0'))))))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n327_0), gen_0':s3_0(n327_0)) → gen_0':s3_0(n327_0), rt ∈ Ω(1 + n3270)
+'(gen_0':s3_0(n733_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n733_0, b)), rt ∈ Ω(1 + n7330)
-(gen_0':s3_0(n1330_0), gen_0':s3_0(n1330_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n13300)
*'(gen_0':s3_0(a), gen_0':s3_0(n1634_0)) → gen_0':s3_0(*(n1634_0, a)), rt ∈ Ω(1 + a·n16340 + n16340)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(26) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
*'(gen_0':s3_0(a), gen_0':s3_0(n1634_0)) → gen_0':s3_0(*(n1634_0, a)), rt ∈ Ω(1 + a·n16340 + n16340)
(27) BOUNDS(n^2, INF)
(28) Obligation:
TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
max(
*'(
s(
x),
s(
x)),
+'(
s(
x),
s(
s(
s(
0'))))),
max(
s(
*'(
s(
x),
s(
x))),
+'(
s(
x),
s(
s(
s(
s(
0'))))))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n327_0), gen_0':s3_0(n327_0)) → gen_0':s3_0(n327_0), rt ∈ Ω(1 + n3270)
+'(gen_0':s3_0(n733_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n733_0, b)), rt ∈ Ω(1 + n7330)
-(gen_0':s3_0(n1330_0), gen_0':s3_0(n1330_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n13300)
*'(gen_0':s3_0(a), gen_0':s3_0(n1634_0)) → gen_0':s3_0(*(n1634_0, a)), rt ∈ Ω(1 + a·n16340 + n16340)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(29) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
*'(gen_0':s3_0(a), gen_0':s3_0(n1634_0)) → gen_0':s3_0(*(n1634_0, a)), rt ∈ Ω(1 + a·n16340 + n16340)
(30) BOUNDS(n^2, INF)
(31) Obligation:
TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
max(
*'(
s(
x),
s(
x)),
+'(
s(
x),
s(
s(
s(
0'))))),
max(
s(
*'(
s(
x),
s(
x))),
+'(
s(
x),
s(
s(
s(
s(
0'))))))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n327_0), gen_0':s3_0(n327_0)) → gen_0':s3_0(n327_0), rt ∈ Ω(1 + n3270)
+'(gen_0':s3_0(n733_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n733_0, b)), rt ∈ Ω(1 + n7330)
-(gen_0':s3_0(n1330_0), gen_0':s3_0(n1330_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n13300)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(32) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(33) BOUNDS(n^1, INF)
(34) Obligation:
TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
max(
*'(
s(
x),
s(
x)),
+'(
s(
x),
s(
s(
s(
0'))))),
max(
s(
*'(
s(
x),
s(
x))),
+'(
s(
x),
s(
s(
s(
s(
0'))))))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n327_0), gen_0':s3_0(n327_0)) → gen_0':s3_0(n327_0), rt ∈ Ω(1 + n3270)
+'(gen_0':s3_0(n733_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n733_0, b)), rt ∈ Ω(1 + n7330)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(35) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(36) BOUNDS(n^1, INF)
(37) Obligation:
TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
max(
*'(
s(
x),
s(
x)),
+'(
s(
x),
s(
s(
s(
0'))))),
max(
s(
*'(
s(
x),
s(
x))),
+'(
s(
x),
s(
s(
s(
s(
0'))))))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n327_0), gen_0':s3_0(n327_0)) → gen_0':s3_0(n327_0), rt ∈ Ω(1 + n3270)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(38) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(39) BOUNDS(n^1, INF)
(40) Obligation:
TRS:
Rules:
min(
0',
y) →
0'min(
x,
0') →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
0',
y) →
ymax(
x,
0') →
xmax(
s(
x),
s(
y)) →
s(
max(
x,
y))
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
max(
*'(
s(
x),
s(
x)),
+'(
s(
x),
s(
s(
s(
0'))))),
max(
s(
*'(
s(
x),
s(
x))),
+'(
s(
x),
s(
s(
s(
s(
0'))))))))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
+' :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(41) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(42) BOUNDS(n^1, INF)